How do you evaluate #e^( ( pi)/12 i) - e^( ( pi)/8 i)# using trigonometric functions?
↳Redirected from
"Find the limit as x approaches infinity of #xsin(1/x)#?"
#color(chocolate)(=> 0.042 - 0.1239#, IV Quadrant
#e^(i theta) = cos theta + i sin theta#
#e^(((pi)/12) i )= cos ((pi)/12 + i sin ((pi)/12)#
#~~> 0.9659 + 0.2588 i#, I Quadrant
#e^(((pi)/8)i) = cos ((pi)/8) + i sin ((pi)/8)#
#=> 0.9239 + 0.3827 i#, I Quadrant.
#e^(((pi)/12)i) - e^(((pi)/8)i) = 0.9659 - 0.9239 + 0.2588 i - 0.3827#
#color(chocolate)(=> 0.042 - 0.1239#, IV Quadrant.